$Cl_2(aq)+H_2SO_4(aq) \rightarrow S(s)+2H^+(aq)+2Cl^-$
માટે પ્રક્રિયાવેગ $=K[Cl_2][H_2S]$ છે.
તો આ વેગ સમીકરણ માટે કઈ કાર્યપ્રણાલી સંકળાયેલી છે ?
$A.\,\, Cl_2 + H_2S \rightarrow H^+ + Cl^- + Cl^+ + HS^-\,\, $ (ધીમી)
$Cl^+ +HS^- \rightarrow H^+ +Cl^- +S \,$ (ઝડપી)
$B.\,\, H_2S \rightleftharpoons H^+ + HS^-\,$ (ઝડપી સંતુલન)
$Cl_2^+ + HS^- \rightarrow 2CI^- + H^+ + S\,\, $ (ધીમી)
if we consider option \(( 1)\) we find
Rate \(=k\left[C l_{2}\right]\left[H_{2} S\right]\)
Now if we consider option \(( 2)\) we find
Rate \(=k\left[C l_{2}\right]\left[H S^{-}\right] \ldots(1)\)
From equation \((i)\)
\(k=\frac{\left|H^{+}\right|\left|H S^{-}\right|}{H_{2} S} \quad\) or
\(\left[H S^{-}\right]=\frac{\left.k | H_{2} S\right\rceil}{H^{+}}\)
Substituting this value in equation \(( 1)\) we find
Rate \(=k\left[C l_{2}\right] K \frac{\left|H_{2} S\right|}{H^{+}}\)
\(=k^{\prime} \frac{\left[C l_{2} \| H_{2} S\right]}{\left|H^{+}\right|}\)
${\log _{10}}\,\left[ { - \frac{{d\left[ A \right]}}{{dt}}} \right] = {\log _{10}}\,\left[ {\frac{{d\left[ B \right]}}{{dt}}} \right] + 0.3010$