\(1.5 \times {10^{ - 2}} = K \times 0.5\)
For first order
\(K = \frac{{1.5 \times {{10}^{ - 2}}}}{{0.5}} = 3 \times {10^{ - 2}}\min^{ - 1}\)
\({t_{1/2}} = \frac{{0.693}}{K} = \frac{{0.693}}{{3 \times {{10}^{ - 2}}}} = 23.1\;\min\)
Run | $[A]/mol\,L^{-1}$ | $[B]/mol\,L^{-1}$ | $D$ ઉત્પન્ન થવાનો શરૂઆતનો દર $mol\,L^{-1}\,min^{-1}$ |
$I.$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$II.$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$III.$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$IV.$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
ઉપરની વિગત પરથી નીચેનામાંથી ક્યું સાચુ છે ?
$2MnO_4^ - + 10{I^ - } + 16{H^ + } \to 2M{n^{2 + }} + 5{I_2} + 8{H_2}O$ તો $I_2$ ના ઉત્પન્ન થવાનો દર......$\times {10^{ - 2}}\,M{s^{ - 1}}$ જણાવો
$[X]$ $0.1\,M$, $[Y]$ $0.1\,M$ દર $\rightarrow 0.002\,Ms^{-1}$
$[X]$ $0.2\,M$, $[Y]$ $0.1\,M$ દર $\rightarrow 0.002\,Ms^{-1}$
$[X]$ $0.3\,M$, $[Y]$ $0.2\,M$ દર $\rightarrow 0.008\,Ms^{-1}$
$[X]$ $0.4\,M$, $[Y]$ $0.3\,M$ દર $\rightarrow 0.018\,Ms^{-1}$
તો દર નિયમ ......