\(0.03=\mathrm{k}[\mathrm{A}]_0 \mathrm{e}^{-\mathrm{k} \times 20 \times 60}\) \(...(2)\)
\((1) /(2)\)
\(\frac{4}{3}=\mathrm{e}^{600 \mathrm{k}(2-1)}\)
\(\frac{4}{3}=\mathrm{e}^{600 \mathrm{k}}\)
\(\ln \frac{4}{3}=600 \mathrm{k}\)
\(\ln \frac{4}{3}=600 \times \frac{\ln 2}{\mathrm{t}_{1 / 2}}\)
\(\mathrm{t}_{1 / 2}=600 \frac{\ln 2}{\ln \frac{4}{3}}\)sec
\(\mathrm{t}_{1 / 2}=600 \times \frac{\log 2}{\log 4-\log 3} \text { sec. }=10 \times \frac{0.3010}{0.6020-0.477} \mathrm{~min}\)
\(\mathrm{t}_{1 / 2}\)
Ans. \(24\)


$2N_2O_5 \rightarrow 4NO_2 + O_2$ નો દર ત્રણ રીતે લખી શકાય.
$\frac{-d[N_2O_5 ]}{dt} = k[N_2O_5]$
$\frac{d[NO_2 ]}{dt} = k'[N_2O_5]\,;$ $\frac{d[O_2 ]}{dt} = k"[N_2O_5]$
$k$ અને $k'$ તથા $k$ અને $k''$ વચ્ચેનો સંબંધ .............