Rate of reaction at $10\, \mathrm{s}=-0.04 \,\mathrm{mol} \,\mathrm{L}^{-1} \,\mathrm{s}^{-1}$
Rate of reaction at $20\, \mathrm{s}=\mathrm{s}=0.03\, \mathrm{mol} \,\mathrm{L}^{-1} \mathrm{s}^{-1}$
$\therefore$ Half - life period $\left(\mathrm{t}_{1 / 2}\right)=?$
We have the equation for rate $-$ constant $k$ in first order reaction
$\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{A}_{\mathrm{t}}}{\mathrm{A}_{0}}$
$=\frac{2.303}{105} \log \frac{0.04}{0.03}$
$=\frac{2.303}{105} \times 0.124$
$\mathrm{k}=0.028\, \mathrm{s}^{-1}$
We know that, $t_{1 / 2}=\frac{0.693}{k}$
$=\frac{0.693}{0.028773391}=24.14\, \mathrm{s}=24.1\, \mathrm{s}$
$\left( {{\rm{R}} = 8.3\;{\rm{Jmo}}{{\rm{l}}^{ - 1}}{{\rm{K}}^{ - 1}},\ln \left( {\frac{2}{3}} \right) = 0.4,\left. {{e^{ - 3}} = 4.0} \right)} \right.$