$2N_2O_5 \rightarrow 4NO_2 + O_2$ નો દર ત્રણ રીતે લખી શકાય.
$\frac{-d[N_2O_5 ]}{dt} = k[N_2O_5]$
$\frac{d[NO_2 ]}{dt} = k'[N_2O_5]\,;$ $\frac{d[O_2 ]}{dt} = k"[N_2O_5]$
$k$ અને $k'$ તથા $k$ અને $k''$ વચ્ચેનો સંબંધ .............
$=\frac{1}{2} \frac{d\left(N_{2} O_{5}\right)}{d t}=\frac{1}{4} \frac{d\left(N O_{2}\right)}{d t}=\frac{d\left(O_{2}\right)}{d t}$
$=\frac{1}{2} k\left(N_{2} O_{5}\right)=\frac{1}{4} k'\left(N_{2} O_{5}\right)=k''\left(N_{2} O_{5}\right)$
$\Rightarrow \frac{k}{2}=\frac{k'}{4}=k''$
$\Rightarrow k'=2 k$, $k''=\frac{k}{2}$
ઉપરોક્ત પ્રથમ ક્રમની પ્રક્રિયામાં $318 \,K$ પર ${N}_{2} {O}_{5}$ની પ્રારંભિક સાંદ્રતા $2.40 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ છે. $1$ કલાક પછી ${N}_{2} {O}_{5}$ની સાંદ્રતા $1.60 \times 10^{-2}\, {~mol} \,{~L}^{-1}$ હતી. $318\, {~K}$ પર પ્રક્રિયાનો વેગ અચળાંક $.....\,\times 10^{-3} {~min}^{-1}.$ (નજીકના પૂર્ણાંકમાં)
[આપેલ છે: $\log 3=0.477, \log 5=0.699$ ]
$A[M]$ | $B[M]$ |
સર્જન નો પ્રારંભિક વેગ $D$ |
|
$i$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$ii$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$ii$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$iv$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
ઉપ૨ની માહિતી ના આધારે સમગ્ર પ્રક્રિયાનો ક્રમ ........ છે.