The time taken for the concentration to change from $0.1 M$ to $0.025 M$ is equal to two half lives, i.e., $2×15=30$ minutes.
This is because when the concentration changes from $0.1 M$ to $0.025 M$, it is reduced to one fourth.
| પ્રયોગ |
$[A]$ ($mol\, L^{-1})$ |
$[B]$ ($mol\, L^{-1})$ |
પ્રક્રિયાની શરૂઆતનો દર $(mol\, L^{-1}$ $min^{-1})$ |
| $I$ | $0.10$ | $0.20$ | $6.93 \times {10^{ - 3}}$ |
| $II$ | $0.10$ | $0.25$ | $6.93 \times {10^{ - 3}}$ |
| $III$ | $0.20$ | $0.30$ | $1.386 \times {10^{ - 2}}$ |
$A$ અડધો વપરાય તે માટેનો સમય મિનિટમાં કેટલો થાય
$\mathrm{N}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{g})$
સાચો વિકલ્પ કયો છે ?
ઉપરોક્ત પ્રથમ ક્રમની પ્રક્રિયામાં $300\, {~K}$ પર $120$ મિનિટમાં ${PCl}_{5}$ની સાંદ્રતા પ્રારંભિક સાંદ્રતા $50\, mol\,{L}^{-1}$ થી $10\, {~mol} \,{~L}^{-1}$ થી ઘટે છે. $300\, {~K}$ પર પ્રક્રિયા માટે દર અચળાંક ${X}$ $\times 10^{-2} \,{~min}^{-1}$ છે. $x$ ની કિંમત $......$ છે.
$[$ આપેલ છે: $\log 5=0.6989]$