$log$નો ગુણધર્મ $\ln \left(\frac{{x}}{{y}}\right)=\ln {x}-\ln {y}$
\({t}=0\quad \quad \quad \quad 1 \text { mole } \quad 0\)
\({t}=100 {~min}\quad 1-{x} \quad \quad 2 {x}\)
\(\quad \quad \quad \quad \quad =0.9 {~mol} \quad =0.2 {~mol}\)
Now, \(t=\frac{t_{1 / 2}}{\ln 2} \times \frac{\left[A_{0}\right]}{\left[A_{t}\right]}\)
\(100=\frac{{t}_{1 / 2}}{\ln 2} \times \ln \frac{1}{0.9} \Rightarrow {t}_{1 / 2}=690\, {~min} . \quad\) (Taking \(\left.\ln 3=1.11\right)\)
Answer is \(700 .\) (Nearest integer).
| $[A] (mol\,L^{-1})$ | $[B] (mol\,L^{-1})$ | પ્રક્રિયાનો પ્રારંભિક વેગ $(mol\, L^{-1}\,s^{-1} )$ |
| $0.05$ | $0.05$ | $0.045$ |
| $0.10$ | $0.05$ | $0.090$ |
| $0.20$ | $0.10$ | $0.72$ |
$2NO \rightleftharpoons {N_2}O + \left[ O \right]$
${O_3} + \left[ O \right] \to 2{O_2}\,(slow)$
તો પ્રકિયાનો કમ જણાવો.