$70\,\frac{{dyne}}{{cm}} = \frac{{70 \times {{10}^{ - 5}}}}{{{{10}^{ - 2}}}}\;\frac{N}{m}$
= $7 \times {10^{ - 2}}N/m$.
List $I$ | List $II$ |
$A$ ટોર્ક | $I$ ${\left[\mathrm{M}^1 \mathrm{~L}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]}$ |
$B$ ચુંબકીય ક્ષેત્ર | $II$ $\left[\mathrm{L}^2 \mathrm{~A}^1\right]$ |
$C$ ચુંબકીય ચાક્માત્રા | $III$ ${\left[\mathrm{M}^1 \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]}$ |
$D$ મુક્ત અવકાશની પારગામયતા | $IV$ $\left[\mathrm{M}^1 \mathrm{~L}^2 \mathrm{~T}^{-2}\right]$ |
નીચે આપેલા વિકલ્પોમાંથી સાચો ઉત્તર પસંદ કરોઃ
વિદ્યાર્થીની સંખ્યા | લોલકની લંબાઈ $(cm)$ | દોલનોની સંખ્યા $(n)$ | દોલનો માટેનો કુલ સમય | આવર્તકાળ $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(લંબાઇની લઘુતમ માપશક્તિ $=0.1 \,{m}$, સમયની લઘુતમ માપશક્તિ$=0.1\, {s}$ )
જો $E_{1}, E_{2}$ અને $E_{3}$ એ $g$ માં અનુક્રમે $1,2$ અને $3$ વિદ્યાર્થીની પ્રતિશત ત્રુટિ હોય, તો લઘુત્તમ પ્રતિશત ત્રુટિ કયા વિદ્યાર્થી દ્વારા મેળવાય હશે?
$\int {\frac{{dx}}{{\sqrt {{a^2}\, - \,{x^n}} \,}}\, = \,{{\sin }^{ - 1}}\,\frac{x}{a}} $