Now, \(\mathrm{V}_{\mathrm{i}}=\frac{\mathrm{Kq}}{2 \mathrm{R}^{3}}\left(3 \mathrm{R}^{2}-\mathrm{r}^{2}\right) \quad[\mathrm{For}\, \mathrm{r}<\mathrm{R}]\)
At the centre of sphare \(r=0 .\)
Here \(\mathrm{V}=\frac{3}{2} \mathrm{V}_{0}\)
Now, \(\frac{5}{4} \frac{\mathrm{Kq}}{\mathrm{R}}=\frac{\mathrm{Kq}}{2 \mathrm{R}^{3}}\left(3 \mathrm{R}^{2}-\mathrm{r}^{2}\right)\)
\(\mathrm{R}_{2}=\frac{\mathrm{R}}{\sqrt{2}}\)
\(\frac{3}{4} \frac{\mathrm{Kq}}{\mathrm{R}}=\frac{\mathrm{Kq}}{\mathrm{R}^{3}}\)
\(\frac{1}{4} \frac{\mathrm{Kq}}{\mathrm{R}}=\frac{\mathrm{Kq}}{\mathrm{R}_{4}}\)
\(\mathrm{R}_{4}=4 \mathrm{R}\)
Also, \(\mathrm{R}_{1}=0\) and \(\mathrm{R}_{2}<\left(\mathrm{R}_{4}-\mathrm{R}_{3}\right)\)