\(\therefore n ^{1 / 3} r = R\)
\(\therefore\) Total change in surface energy
\(=\left(n\left(4 \pi r^{2}\right)-4 \pi R^{2}\right) T\)
\(\Rightarrow 4 \pi T \left( nr ^{2}- R ^{2}\right)\)
\(\therefore\) Heat energy
\(=\frac{4 \pi T \left( nr ^{2}- R ^{2}\right)}{ J \times \frac{4}{3} \pi R ^{3}}=\frac{3 T }{ J }\left(\frac{ nr ^{2}}{ R ^{3}}-\frac{1}{ R }\right)\)
Put \(nr ^{3}= R ^{3}\)
\(\therefore \frac{3 T }{ J }\left(\frac{1}{ r }-\frac{1}{ R }\right)\)