\(T_{A}-m g=\frac{m v_{c}^{2}}{R}\)
Energy at point \(A=\frac{1}{2} m v_{0}^{2}\) \(...(i)\)
Energy at point \(C\) is
\(\frac{1}{2} m v_{c}^{2}+m g \times 2 R \ldots .\) \(...(ii)\)
Applying Newton's second law at point \(C\)
\(T_{c}+m g=\frac{m v_{c}^{2}}{R}\)
To complete the loop \(T_{c} \geq 0\)
So, \(m g=\frac{m v_{c}^{2}}{R}\)
\(\Rightarrow \quad v_{c}=\sqrt{g R}\) \(...(ii)\)
From Eqs. \((i)\) and \((ii)\) by conservation of energy
\(\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m v_{c}^{2}+2 m g R\)
\(\Rightarrow \quad \frac{1}{2} m v_{0}^{2}=\frac{1}{2} m g R+2 m g R \quad\left(\because v_{c}=\sqrt{g R}\right)\)
\(\Rightarrow \quad v_{0}^{2}=g R+4 g R\)
\(\Rightarrow \quad v_{0}=\sqrt{5 g R}\)