\(\Rightarrow \frac{1}{3}=e^{-\lambda \times 3}=e^{-3 \lambda}\) .........\((1)\)
Let activity in \(9\) days be \(R'\). Then
\(\frac{R^{\prime}}{R_{0}}=e^{-\lambda \times 9}=e^{-9 \lambda} e^{-\lambda \times 3}=\left(e^{-3 \lambda}\right)^{3}\)
\(=\left(\frac{1}{3}\right)^{3}, \quad\) from \((1)\)
\(=\frac{1}{27} \Rightarrow R^{\prime}=\frac{R_{0}}{27}.\)
${ }_{84}^{218} A \stackrel{\alpha}{\longrightarrow} A_1 \stackrel{\beta^{-}}{\longrightarrow} A_2 \stackrel{\gamma}{\longrightarrow} A_3 \stackrel{\alpha}{\longrightarrow} A_4 \stackrel{B^{+}}{\longrightarrow} A_5 \stackrel{\gamma}{\longrightarrow} A_6$
$A_6$ના પરમાણુ દળમાં અને પરમાણુ ક્રમાંક શું થાય?