\(N(t)=N_{0} e^{-\lambda t}\)
where \(N_{0}\) is number of radioactive nuclei in the sample at some aribitrary time \(t=0\) and \(\lambda\) is the radioactive decay constant.
Given: \(\lambda_{A}=8 \lambda, \lambda_{B}=\lambda, N_{0 A}=N_{0 B}=N_{0}\)
\( \therefore \quad \frac{N_{B}}{N_{A}} =\frac{e^{-\lambda t}}{e^{-8 \lambda t}} \)
\(\frac{1}{e}=e^{-\lambda t} e^{8 \lambda t}=e^{7 \lambda t}\)
\(\Rightarrow-1=7 \lambda t\) or \(t=\frac{-1}{7 \lambda}\)
${ }_{\mathrm{Z}}^{\mathrm{A}} \mathrm{X} \rightarrow {}_{\mathrm{Z}-1}{\mathrm{B}} \rightarrow {}_{\mathrm{Z}-3 }\mathrm{C} \rightarrow {}_{\mathrm{Z}-2} \mathrm{D}$, જ્યાં $\mathrm{Z}$ એ $X$ નો પરમાણુક્રમાંક છે. ઉપરોક્ત ક્રમમાં ક્ષય પામતા શક્ય કણો $.....$ હશે.