\( \Rightarrow {\rm{g}} = \frac{{4{\pi ^2}l}}{{{{\rm{T}}^2}}}\)
\(\frac{{\Delta g}}{g} = \frac{{\Delta l}}{l} + \frac{{2\Delta T}}{T}\)
\(=\left[\frac{0.1}{100}+2\left(\frac{0.1}{50}\right)\right] \times 100\)
\(=(0.1+0.4) \%=0.5 \%\)
કારણ $R:$ લઘુત્તમ માપશક્તિ = પિચ/ વર્તુળાકાર સ્કેલ પરના કુલ કાપા
ઉપરોક્ત વિધાનોના સંદર્ભમાં, નીચે આપેલા વિકલ્પો પૈકી સૌથી યોગ્ય જવાબ પસંદ કરો.
સૂચી $-I$ | સૂચી $-II$ |
$(a)$ $h$ (પ્લાન્કનો અચળાંક) | $(i)$ $\left[ M L T ^{-1}\right]$ |
$(b)$ $E$ (ગતિ ઊર્જા) | $(ii)$ $\left[ M L ^{2} T ^{-1}\right]$ |
$(c)$ $V$ (વિદ્યુત સ્થિતિમાન) | $(iii)$ $\left[ M L ^{2} T ^{-2}\right]$ |
$(d)$ $P$ (રેખીય વેગમાન) | $( iv )\left[ M L ^{2} I ^{-1} T ^{-3}\right]$ |
નીચે આપેલા વિકલ્પોમાંથી સાચા જવાબનું ચયન કરો.