સાદા લોલકનો આવર્તકાળ $T =2 \pi \sqrt{\frac{\ell}{ g }}$ છે. $1\, mm$ ચોકસાઇથી લોલકની લંબાઈ માપતા $10\, cm$ મળે છે. $1\,s$ ની લઘુતમ માપશક્તિ વાળી ઘડિયાળથી માપતા $200$ દોલનનો સમય $100$ સેકન્ડ મળે છે. આ સાદા લોલક દ્વારા $g$ ના મૂલ્યને ચોકસાઈ સાથે માપતા પ્રતિશત ત્રુટી $x$ મળે છે.$x$ નું મૂલ્ય નજીકના પૂર્ણાંકમાં કેટલું ($\%$ માં) હશે?
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
સેકન્ડ દીઠ, ત્રિજ્યા $r$ અને લંબાઈ $l$ ના એક ઘન દ્વારા અને તેના અંતમાં દબાણા તફાવત $P$ દ્વારા વહેતી સિનિગ્ધતા ' $c$ ' ના સહગુણાંકના પ્રવાહીના $V$ કદ માટે પારિમાણિક સુસંગતતા સંબંધ શું હશે?
કણની સ્થિતિઉર્જા અંતર $x$ સાથે $U\, = \,\frac{{A\sqrt x }}{{{x^2} + B}}$ મુજબ બદલાય છે. જ્યાં $A$ અને $B$ પરિમાણ ધરાવતા અચળાંક છે. તો $A/B$ નું પારિમાણિક સૂત્ર શું થાય?