\({\mathrm{Mg}=\mathrm{P}_{0} \mathrm{A}}{\ldots(1)}\) \( {P_{0} A x_{0}^{\gamma}=P A\left(x_{0}-x\right)^{\gamma}}\)
\(P=\frac{P_{0} x_{0}^{\gamma}}{\left(x_{0}-x\right)^{\gamma}}\)
Let piston is displaced by distance \(x\)
\(M g-\left(\frac{P_{0} x_{0}^{\gamma}}{\left(x_{0}-x\right)^{\gamma}}\right) A=F_{\text {restoring }}\)
\(P_{0} A\left(1-\frac{x_{0}^{\gamma}}{\left(x_{0}-x\right)^{\gamma}}\right)=F_{\text {restoring }} \quad\left[x_{0}-x \approx x_{0}\right]\)
\(F=-\frac{\gamma P_{0} A x}{x_{0}}\)
Frequency with which piston executes \(SHM.\)
\(f=\frac{1}{2 \pi} \sqrt{\frac{\gamma P_{0} A}{x_{0} M}}=\frac{1}{2 \pi} \sqrt{\frac{\gamma P_{0} A^{2}}{M V_{0}}}\)
જ્યાં $A$ અને $K$ ધન અચળાંકો છે.