$F=\frac{\alpha-t^2}{\beta v^2}$
Dimensionally, $\alpha=\left[ T ^2\right]$
$\left[M L T^{-2}\right]=\frac{\left[ T ^2\right]}{\beta\left[L^2 T^{-2}\right]}$
$\beta=\frac{ T ^2}{\left[ MLT ^{-2} \cdot L ^2 T ^{-2}\right]}$
$\Rightarrow \beta=\left[ M ^{-1} L ^{-3} T ^6\right]$
Dimensions of $\frac{\alpha}{\beta}=\frac{ T ^2}{ M ^{-1} L ^{-3} T ^6}=\left[ ML ^3 T ^{-4}\right]$
${F}={A} \cos {Bx}+{C} \sin {Dt}$
$\frac{{AD}}{{B}}$ નું પારિમાણિક સૂત્ર શું થાય?