${F}={A} \cos {Bx}+{C} \sin {Dt}$
$\frac{{AD}}{{B}}$ નું પારિમાણિક સૂત્ર શું થાય?
\({[ A ]=\left[ MLT ^{-2}\right] }\)
\({[ B ]=\left[ L ^{-1}\right] }\)
\({[ D ]=\left[ T ^{-1}\right] }\)
\({\left[\frac{ AD }{ B }\right]=\frac{\left[ MLT ^{-2}\right]\left[ T ^{-1}\right]}{\left[ L ^{-1}\right]} }\)
\({\left[\frac{ AD }{ B }\right]=\left[ ML ^{2} T ^{-3}\right] }\)
જ્યાં $X = \frac{{{A^2}{B^{\frac{1}{2}}}}}{{{C^{\frac{1}{3}}}{D^3}}}$