$y=x^2 \cos ^2 2 \pi\left(\frac{\beta \gamma}{\alpha}\right)$
The argument of a trigonometric ratio is always dimensionless.
$\frac{\beta \gamma}{\alpha}=\left[ M ^0 L ^0 T ^0\right] \text { or } \beta \gamma=\alpha \Rightarrow \gamma=\frac{ T }{ L ^2}$
$\text { and } y=x^2 \Rightarrow\left[ L ^2\right]$
$\alpha= s ^{-1} \Rightarrow\left[ T ^{-1}\right], \beta=\left[ LT ^{-1}\right]^{-1} \Rightarrow\left[ L ^{-1} T \right]$
$y=m^2$
$\gamma= ms ^{-2}$
અવરોધ $= 1.05 \pm 0.01\, \Omega$
વ્યાસ $= 0.60 \pm 0.01\, mm$
લંબાઈ $= 75.3 \pm 0.1 \,cm$