\(P\) = Pressure = \([M{L^{ - 1}}{T^{ - 2}}]\),
\(r\) = Radius = \([L]\)
\(\eta \) = Coefficient of viscosity = \([M{L^{ - 1}}{T^{ - 1}}]\),
\( l\) = Length = \( [L]\)
\(V = \frac{{\pi P\,{r^4}}}{{8\eta l}}\)
\(\therefore [{L^3}{T^{ - 1}}] = \frac{{[M{L^{ - 1}}{T^{ - 2}}]\,[{L^4}]}}{{[M{L^{ - 1}}{T^{ - 1}}]\,[L]}}\) = \([{L^3}{T^{ - 1}}]\)
\(L.H.S. = R.H.S.\)