\(aA _{( g )}+ bB _{( g )} \rightleftharpoons cC _{( g )}+ dD _{( g )}\)
Let \(p _{ A }, p _{ B }, p _{ C }\) and \(p _{ D }\) be the partial pressure of \(A , B , C\) and \(D\) repectively. Therefore,
\(K _{ c }=\frac{[ C ]^{ c }[ D ]^{ d }}{[ A ]^{ a }[ B ]^{ b }} \ldots . .(1)\)
\(K _{ p }=\frac{ pC ^c p _{ D }^{ d }}{ p _{ A }^{ a } p _{ B }^{ b }} \ldots \ldots .(2)\)
For an ideal gas-
\(PV = nRT\)
\(\Rightarrow P =\frac{ n }{ V } RT = CRT\)
Whereas \(C\) is the concentration.
Therefore,
\(p _{ A }=[ A ] RT\)
\(p _{ B }=[ B ] RT\)
\(p _{ C }=[ C ] RT\)
\(p _{ D }=[ D ] RT\)
Substituting the values in equation \((2),\) we have
\(K _{ p }=\frac{[ C ]^{ c }( RT )^{ c }[ D ]^{ d }( RT )^{ d }}{[ A ]^{ a }( RT )^{ a }[ B ]^{ b }( RT )^{ b }}\)
\(\Rightarrow K _{ p }=\frac{[ C ]^{ c }[ D ]^{ d }}{[ A ]^{ a }[ B ]^{ b }}( RT )^{[( c c )-( a + b )]}\)
\(\left.\Rightarrow K _{ p }= K _{ c }( RT )^{\Delta n_{ g }} \quad \text { (From (1) }\right]\)
Here,
\(\Delta n _{ g }=\) Total no. of moles of gaseous product \(-\) Total no. of moles of gaseous reactant
Hence the relation between \(K_p\) and \(K_c\) is-
\(K _{ p }= K _{ c }( RT )^{\Delta n _{ g }}\)
$\left( 2 \right)\,{N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons 2NO\left( g \right)\,,\,{K_2}$
$\left( 3 \right)\,{H_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \rightleftharpoons {H_2}O\left( g \right)\,,\,{K_3}$
તો $K_1 , K_2$ , અને $K_3$ ના $(K_4)$ સંદર્ભમાં નીચેની પ્રક્રિયા સમીકરણ માટે સંતુલન અચળાંક જણાવો.
$2N{H_3}\left( g \right) + \frac{5}{2}{O_2}\left( g \right) \rightleftharpoons 2NO\left( g \right) + 3{H_2}O\left( g \right)$
પ્રક્રિયા માટે સંતુલન અચળાંક $K_{p}=4$ છે, સંતુલન પર, ${O}_{2}$નું આંશિક દબાણ $....\,atm$ છે.