(\(\alpha =\) degree of dissociation)
Total number of moles at equil.
\( = (1 - \alpha ) + 2\alpha \)
\( = (1 + \alpha )\)
\({P_{{N_2}{O_4}}} = \frac{{(1 - \alpha )}}{{(1 + \alpha )}} \times P\)
\({P_{N{O_2}}} = \frac{{2\alpha }}{{(1 + \alpha )}} \times P\)
\({K_P} = \frac{{{{({P_{N{O_2}}})}^2}}}{{{P_{{N_2}{O_4}}}}} = \frac{{{{\left( {\frac{{2\alpha }}{{(1 + \alpha )}} \times P} \right)}^2}}}{{\left( {\frac{{1 - \alpha }}{{(1 + \alpha )}}} \right) \times P}} = \frac{{4{\alpha ^2}P}}{{1 - {\alpha ^2}}}\)
Given, \({K_P} = 2,\,P = 0.5\,atm\)
\(\therefore \,{K_P} = \frac{{4{\alpha ^2}P}}{{1 - {\alpha ^2}}}\)
\( = \frac{{4{\alpha ^2} \times 0.5}}{{1 - {\alpha ^2}}}\)
\(\alpha = 0.707 \approx 0.71\)
\(\therefore \) Percentage dissociation
\( = 0.71 \times 100 = 71\)
(ઉપયોગ $R =8.31\, J\, K ^{-1}\, mol ^{-1} ; \log 2=0.3010$. In $10=$ $2.3, \log 3=0.477$ )
$2 A ( g ) + B ( g ) \rightleftharpoons C ( g )+ D ( g )$
નીચે આપેલામાંથી કયું એક સંતુલન પર અસર કરશે નહી ?