At equilibrium when $\Delta G=0$ and $Q=K$ then $\Delta \mathrm{G}=\Delta \mathrm{G}^{o}+2.303 \,\mathrm{RT} \,\log \,\mathrm{K}=0$
$\Delta G^{o}=-2.303 \,\mathrm{RT} \,\log \,\mathrm{K}$
નો $K_{sp}$ ........ થશે.
$(R = 8.314\, J\, K^{-1}\,mol^{-1})$
$Ag_2CO_{3(s)} \rightleftharpoons 2Ag^+_{(aq)} + CO^{2-}_{3(s)}$
$N_2 + 3H_2 $ $\rightleftharpoons$ $ Z_{(g)}\,\, 2NH_{3(g)} ; \,\,k_1\,\,, N_2 + O_2 $ $\rightleftharpoons$ $ 2NO \,\,; k_2 \,\,, H_2 +$ $\frac{1}{2}$ $O_2$ $\rightleftharpoons$ $H_2O$ ; $k_3$ તો પ્રક્રિયા $2NH_3$ $+$ $\frac{5}{2}$$O_2$ $\rightleftharpoons$ $2NO$ $+$ $3H_2O$ નો સંતુલન અચળાંક $k_1 , k_2$ અને $k_3$ ના રૂપમાં.....
$(i)\,CO(g)+ H_2O(g) \rightleftharpoons CO_2(g)+H_2(g)\,;\,K_1$
$(ii)\,CH_4(g)+H_2O(g) \rightleftharpoons CO(g)+3H_2(g)\,;\,K_2$
$(iii)\,CH_4(g) + 2H_2O(g) \rightleftharpoons CO_2(g)+ 4H_2(g)\,;\,K_3$