\(\rho = 1.3\,\frac{{kg}}{{{m^3}}}\),
\(P = 1.01\, \times {10^5}\,\frac{N}{{{m^2}}}\)
\({v_{{\rm{sound}}}} = \sqrt {\frac{{\gamma \,P}}{\rho }} \)
\(\gamma = 1.41\)
\(\gamma = 1 + \frac{2}{f}\)
\(f = \frac{2}{{\gamma - 1}} = \frac{2}{{1.4 - 1}} = 5.\)
$(a)$ $\left(x^2-v t\right)^2$
$(b)$ $\log \left[\frac{(x+v t)}{x_0}\right]$
$(c)$ $e^{\left\{-\frac{(x+v t)}{x_0}\right\}^2}$
$(d)$ $\frac{1}{x+v t}$