we have, \(x=A \cos \omega t .\) At \(t=0, x=A\)
When \(t=\tau, x=A-a\) and
\(\text { when } t=2 \tau, x=A-3 a\)
\(\Rightarrow A-a=A \times \cos \times \omega \tau\) and \(...(i)\)
\(A-3 a=A \times \cos \times 2 \omega \tau\) \(...(ii)\)
As, \(\cos 2 \omega \tau=2 \cos ^{2} \omega \tau-1\)
\(\Rightarrow \quad \frac{A-3 a}{A}=2\left(\frac{A-a}{A}\right)^{2}-1\)
\(\therefore \quad \frac{A-3 a}{A}=\frac{2 A^{2}+2 a^{2}-4 A a-A^{2}}{A^{2}}\)
\(\therefore \quad A^{2}-3 a A=A^{2}+2 a^{2}-4 A a\)
\(\therefore \quad a^{2}=2 a A \Rightarrow A=2 a\)
\(\text { Now, } A-a=A \times \cos \times \omega \tau \ldots \ldots[\text { From }(1)]\)
\(\Rightarrow \quad \cos x \omega \tau=\frac{1}{2}\)
\(\therefore \quad \frac{2 \pi}{T} \tau=\frac{\pi}{3} \Rightarrow T=6 \tau\)
$(A)\;y= sin\omega t-cos\omega t$
$(B)\;y=sin^3\omega t$
$(C)\;y=5cos\left( {\frac{{3\pi }}{4} - 3\omega t} \right)$
$(D)\;y=1+\omega t+{\omega ^2}{t^2}$