ત્રણ સદિશો $\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k}), \vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})$ અને $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$ માટે જો $\vec{A} \cdot(\vec{B} \times \vec{C})=0$ હોય તો $x$ નું મૂલ્ચ. . . . . .છે.
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
ત્રણ કણ ${P}, {Q}$ અને ${R}$ અનુક્રમે સદીશ ${A}=\hat{{i}}+\hat{{j}}, {B}=\hat{{j}}+\hat{{k}}$ અને ${C}=-\hat{{i}}+\hat{{j}}$ ની દિશામાં ગતિ કરે છે. તે એક બિંદુ પર અથડાય છે અને જુદી જુદી દિશામાં ગતિ કરે છે. હવે કણ $P$ એ સદીશ $\vec{A}$ અને $\vec{B}$ ને સમાવતા સમતલને લંબ ગતિ કરે છે. તેવી જ રીતે કણ $Q$ એ સદીશ $\vec{A}$ અને $\vec{C}$ ને સમાવતા સમતલને લંબ ગતિ કરે છે. કણ $P$ અને $Q$ ની ગતિની દિશા વચ્ચેનો ખૂણો $\cos ^{-1}\left(\frac{1}{\sqrt{x}}\right)$ છે. તો $x$ નું મૂલ્ય કેટલું હશે?