We get \(a = Y_0, \, \omega = 2\ pi f, k = \frac{{2\pi }}{\lambda }\).
Hence maximum particle velocity \({({v_{\max }})_{particle}} = a\omega = {Y_0} \times 2\pi f\)
and wave velocity \({(v)_{wave}} = \frac{\omega }{k} = \frac{{2\pi f}}{{2\pi /\lambda }} = f\lambda \)
\(\because \,\,\,{({v_{\max }})_{Particle}} = 4{v_{Wave}}\)==> \({Y_0} \times 2\pi f = 4f\lambda \) ==> \(\lambda = \frac{{\pi {Y_0}}}{2}\).
$ {y_1} = {10^{ - 6}}\sin [100\,t + (x/50) + 0.5]\;m $
$ {y_2} = {10^{ - 6}}\cos \,[100\,t + (x/50)]\;m $
જ્યાં $x$ મીટરમાં હોય અને $t$ સેકન્ડમાં છે