વાન્-ડર-વાલ્સ સમીકરણ $\left[ P +\frac{ a }{ V ^{2}}\right][ V - b ]= RT$ માં, $P$ એ દબાણ, $V$ એ કદ, $R$ એ વાયુના સાર્વત્રિક અચળાંક અને $T$ એ તાપમાન છે. અચળાંકોનો ગુણોત્તર $\frac{a}{b}$ એ પારિમાણિક રીતે ............. ને સમાન છે.
JEE MAIN 2022, Medium
Download our app for free and get started
c By principle of homogenity
${[ P ]=\left[\frac{ a }{ v ^{2}}\right] \text { and }[ b ]=[ v ]}$
$\Rightarrow\left[\frac{ a }{ b }\right]=[ PV ]$
Download our app
and get started for free
Experience the future of education. Simply download our apps or reach out to us for more information. Let's shape the future of learning together!No signup needed.*
એક ભૌતિકરાશિ $Q$ એ $a, b, c$ રાશિઓ સાથે $Q=\frac{a^4 b^3}{c^2}$ સમીકરણ મુજબ સંબંધ ધરાવે છે. $a, b$ અને $c$ માં પ્રતિશત ત્રૂટિ અનુક્રમે $3 \%, 4 \%$ અને $5 \%$ છે. $Q$ માં પ્રતિશત ત્રુટિ__________છે.
નજીક દેખાતા બે તારા $(Stars)$ નું અંતર માપવા માટે પરિચ્છેદ $2.3.1$ ની દૃષ્ટિસ્થાનભેદની રીતના સિદ્ધાંતનો ઉપયોગ કરવામાં આવે છે. સૂર્યની આસપાસ પોતાની ભ્રમણ કક્ષામાં છ મહિનાના સમય અંતરાલમાં પૃથ્વીનાં બે સ્થાનોને જોડતી આધાર રેખા $AB$ છે એટલે કે આધાર રેખા પૃથ્વીની કક્ષાના વ્યાસ $\approx 3 \times 10^{11}\;m$ જેટલી લગભગ છે. જોકે નજીક રહેલા બે તારા એટલા દૂર છે કે આટલી લાંબી આધાર રેખા હોવા છતાં તેઓ $1”$ (સેકન્ડ) જેટલો ચાપનો $(Arc)$ દૃષ્ટિસ્થાનભેદ દર્શાવે છે. ખગોળીય સ્તર પર લંબાઈનો સુવિધાજનક એકમ પાર્સેક છે. પાર્સેક કોઈ પદાર્થનું અંતર સૂચવે છે કે જે પૃથ્વી અને સૂર્ય વચ્ચેનાં અંતર જેટલી આધાર રેખાના બે છેડાઓએ આંતરેલ ખૂણો $1”$ $(Second \,Arc)$ બરાબર હોય. એક પાર્સેકનું મૂલ્ય મીટરમાં કેટલું થશે ?
તરંગ સમીકરણ ${\rm{Y = A \,sin}}\,\omega {\rm{ }}\left( {\frac{x}{v}\,\, - \,\,k} \right)$ દ્વારા આપી શકાય જ્યાં $\omega$ એ કોણીય વેગ અને $v$ એ રેખીય વેગ છે $k$ નું પરિમાણ શું હશે ?