\(\overrightarrow{{F}}_{1}=4 \pi\left[0.5\,c \hat{{i}} \times {B}_{0}\left(\frac{\hat{{i}}+\hat{{j}}}{2}\right) \cos \left({K} \cdot \frac{\pi}{{K}}-0\right)\right]\)
\(\overrightarrow{{F}}_{2}=2 \pi\left[0.5 {c} \hat{{i}} \times {B}_{0}\left(\frac{\hat{{i}}+\hat{{j}}}{2}\right) \cos \left({K} \cdot \frac{3 \pi}{{K}}-0\right)\right]\)
\(\cos \pi=-1, \quad \cos 3 \pi=-1\)
\(\therefore \frac{{F}_{1}}{{F}_{2}}=2\)
$\vec E = 2{E_0}\,\hat i\,\cos\, kz\,\cos\, \omega t$
તો તેના માટે ચુંબકીયક્ષેત્ર $\vec B$ કેટલું હશે?