\(\therefore \,\,{I_{\max }}\, = \,\,{ \in _0}c\,{E_0}\,.\,{E_0}\,\, = \,{ \in _0}c\, \times \,c{B_0} \times {E_0}\,[\because \,{E_0}\, = \,C{B_0}]\,\, = \,{ \in _0}{c^2}\,{E_0}{B_0}\,\,\)
\( = \,\,{E_0} \times \,\frac{1}{{{\mu _0}{ \in _0}}}\,{E_0}\,\, \times \,{\mu _0}{H_0}\,\,[{c^2}\, = \,\frac{1}{{{\mu _0}{ \in _0}}}\,\)
\({B_0}\, = \,{\mu _0}{H_0}]\,\, = \,\,{E_0}{H_0}\, = \,100 \times 0.265\,\,\,\,\therefore \,\,\,{I_{rms}}\, = \,26.5\,W/{m^2}\)
($A$) $\mathrm{E}=0, \mathrm{~B}=0$
($B$) $\mathrm{E}=0, \mathrm{~B} \neq 0$
($C$) $\mathrm{E} \neq 0, \mathrm{~B}=0$
($D$) $\mathrm{E} \neq 0, \mathrm{~B} \neq 0$
નીચે આપેલ વિકલ્પોમાંથી સૌથી ઉચિત ઉત્તર પસંદ કરો :