\(\because\) Least count\(=1 \mathrm{MSD}-1 \mathrm{VSD}\)
let \(\mathrm{x}\) no. of divisions of main scale coincides with \(\mathrm{N}\) division of vernier scale, then
\(1 \mathrm{VSD}=\frac{\mathrm{x} \times 1 \mathrm{~mm}}{\mathrm{~N}}\)
\(\therefore \frac{1}{20 \mathrm{~N}} \mathrm{~cm}=1 \mathrm{~mm}-\frac{\mathrm{x} \times 1 \mathrm{~mm}}{\mathrm{~N}}\)
\(\frac{1}{2 \mathrm{~N}} \mathrm{~mm}=1 \mathrm{~mm}-\frac{\mathrm{x}}{\mathrm{N}} \mathrm{mm}\)
\(\mathrm{x}=\left(1-\frac{1}{2 \mathrm{~N}}\right) \mathrm{N}\)
\(\mathrm{x}=\frac{2 \mathrm{~N}-1}{2}\)