\(1 \mathrm{VSD}=\frac{10}{11} \mathrm{MSD}\)
\(\mathrm{LC}=1 \mathrm{MSD}-1 \mathrm{VSD}\)
\(=1 \mathrm{MSD}-\frac{10}{11} \mathrm{MSD}\)
\(=\frac{1 \mathrm{MSD}}{11}\)
\(-\frac{5}{11} \text { units }\)
જયાં $B$ = ચુંબકીય ક્ષેત્ર, $l$ = લંબાઇ ,$m$ =દળ
વિદ્યાર્થીની સંખ્યા | લોલકની લંબાઈ $(cm)$ | દોલનોની સંખ્યા $(n)$ | દોલનો માટેનો કુલ સમય | આવર્તકાળ $(s)$ |
$1.$ | $64.0$ | $8$ | $128.0$ | $16.0$ |
$2.$ | $64.0$ | $4$ | $64.0$ | $16.0$ |
$3.$ | $20.0$ | $4$ | $36.0$ | $9.0$ |
(લંબાઇની લઘુતમ માપશક્તિ $=0.1 \,{m}$, સમયની લઘુતમ માપશક્તિ$=0.1\, {s}$ )
જો $E_{1}, E_{2}$ અને $E_{3}$ એ $g$ માં અનુક્રમે $1,2$ અને $3$ વિદ્યાર્થીની પ્રતિશત ત્રુટિ હોય, તો લઘુત્તમ પ્રતિશત ત્રુટિ કયા વિદ્યાર્થી દ્વારા મેળવાય હશે?
સૂચિ $-I$ | સૂચિ $-II$ |
$(A)$ ટોર્ક | $(I)$ $ML ^{-2} T ^{-2}$ |
$(B)$ પ્રતિબળ | $(II)$ $ML ^2 T ^{-2}$ |
$(C)$ દબાણ પ્રચલન | $(III)$ $ML ^{-1} T ^{-1}$ |
$(D)$ શ્યાનતા ગુણાંક | $(IV)$ $ML ^{-1} T ^{-2}$ |
આપેલા વિકલ્પોમાથી સાચો ઉત્તર પસંદ કરો.