Let \(t\) be the time taken by the particle to move from \(x=0\) to \(x=2 \,cm\)
\(y = a\sin \omega t\)
\(\Rightarrow 2 = 4\sin \frac{{2\pi }}{T}t\)
\( \Rightarrow \frac{1}{2} = \sin \frac{{2\pi }}{{1.2}}t\)
\( \Rightarrow \frac{\pi }{6} = \frac{{2\pi }}{{1.2}}t\)
\(\Rightarrow t = 0.1\;s\).
Hence time to move from \(x = 2\) to \(x = 4\) will be equal to \(0.3 -0.1 = 0.2\, s\)
Hence total time to move from \(x = 2\) to \( x = 4\) and back again \( = 2 \times 0.2 = 0.4\sec \)
${x}_{1}=5 \sin \left(2 \pi {t}+\frac{\pi}{4}\right)$ અને ${x}_{2}=5 \sqrt{2}(\sin 2 \pi {t}+\cos 2 \pi {t})$
બીજી ગતિનો કંપવિસ્તાર પહેલી ગતિ કરતાં કેટલા ગણો હશે?