\(y\) કણની વેગમાનની અચોક્કસતા=\(\Delta P_{(y)}\)
\(x\) કણના સ્થાનની અચોક્કસતા =\(\Delta X_{(x)}\)
\(y\) કણના સ્થાનની અચોક્કસતા =\(\Delta X_{(y)}\)
હવે \(\Delta {P_{(x)}}\,\, = \,\,\frac{{\Delta {P_{(y)}}}}{2}\,\,\,\Delta {x_{(x)}}\, \times \,\Delta {P_{(x)}}\,\, = \,\,\frac{h}{{4\pi }}\,\,\,\therefore \,\,\Delta {x_{(x)}}\, \times \,\frac{{\Delta {P_{(y)}}}}{2}\, = \,\frac{h}{{4\pi }}\)
\(\therefore \,\,0.05\, \times \,\Delta {P_{(y)}}\,\, = \,\,\frac{{2h}}{{4\pi }}\,\,\,\therefore \,\,\Delta {P_{(y)}}\,\, = \,\,\frac{{2h}}{{4\pi \, \times \,0.05}}\,\,\Delta {x_{(y)}}\, \times \,\Delta {P_{(y)}}\,\, = \,\,\frac{h}{{4\pi }}\)
\(\therefore \,\Delta {x_{(y)}}\, \times \,\frac{{2h}}{{4\pi \, \times \,0.05}}\,\, = \,\,\frac{h}{{4\pi }}\,\,\,\therefore \,\,\Delta {x_{(y)}}\,\, = \,\,\frac{{h\, \times \,4\pi \, \times \,0.05}}{{4\pi \, \times \,2h}}\,\,\,\therefore \,\,\Delta {x_{(y)}}\,\, = \,\,0.025\,\mathop A\limits^ \circ \)
\(\Delta {x_{(y)}} \,=\, \) \(2.5 \times 10^{-10}\) સેમી
$(h\, = 6.625\times10^{-34}\, J\,s,\, c\, = 3\times10^8\, m\,s^{-1})$