==>\({x^4} + 24{x^2} + 28 = ({A_1}x + {B_1})\,{({x^2} + 1)^2}\)
\( + ({A_2}x + {B_2})\,({x^2} + 1) + ({A_3}x + {B_3})\)
Putting \(x = i,\,5 = {A_3}i + {B_3}\)\( \Rightarrow \) \({A_3} = 0,\,{B_3} = 5\)
Equating different powers of \(x\),
\(0 = {A_1},\,{B_1} = 1,\,2{A_1} + {A_2} = 0 \Rightarrow {A_2} = 0\)
\(2{B_1} + {B_2} = 24 \Rightarrow {B_2} = 22\).
\(\therefore\) Partial fraction = \({1 \over {{x^2} + 1}} + {{22} \over {{{({x^2} + 1)}^2}}} + {5 \over {{{({x^2} + 1)}^3}}}\).