${H_2}O(l)$ $\rightleftharpoons$ ${H_2}O(g)$
\(\Delta n = 1\) means positive
so when \(\Delta n\) is positive then \(\Delta G < 0\).
$(A)$ $\Delta U = q + p \Delta V$
$(B)$ $\Delta G =\Delta H - T \Delta S$
$(C)$ $\Delta S =\frac{ q _{ rev }}{ T }$
$(D)$ $\Delta H =\Delta U -\Delta nRT$
નીચે આપેલા વિકલ્પોમાંથી યોગ્ય ઉત્તર પસંદ કરો.
$(i)\,\,\Delta H_f^o\,\,of\,{H_2}{O_{(\ell )}}\, = \,\, - 68.3\,K\,\,cal\,\,mo{l^{ - 1}}$
$(ii)\,\,\Delta H_{comb}^o\,\,of\,{C_2}{H_2}\, = \,\, - 337.2\,K\,\,cal\,\,mo{l^{ - 1}}$
$(iii)\,\,\Delta H_{comb}^o\,\,of\,\,{C_2}{H_4}\,\, = \,\, - \,363.7\,\,K\,\,cal\,\,mo{l^{ - 1}} $
$(i)\,\,C\,({\rm{graphite}})\, + \,{O_2}{\kern 1pt} (g)\, \to \,C{O_2}\,(g);\,\Delta r{H^\circleddash} = x\,\,kJ\,mo{l^{ - 1}}$
$(ii)\,\,C\,({\rm{graphite}})\, + \,\frac{1}{2}{O_2}{\kern 1pt} (g)\, \to \,CO\,(g);\,\Delta r{H^\circleddash} = y\,\,kJ\,mo{l^{ - 1}}$
$(iii)\,\,CO\,(g)\, + \,\frac{1}{2}{O_2}{\kern 1pt} (g)\, \to \,C{O_2}\,(g);\,\Delta r{H^\circleddash} = z\,\,kJ\,mo{l^{ - 1}}$
ઉપરોક્ત, ઊષ્મારાસાયણિક સમીકરણો ના આધારે નીચેનામાંથી ક્યો બીજગણિતિક સંબંધ સાચો છે?