\(\Delta {S_{fus}}\,\, = \,\,\frac{{\Delta {H_{fus}}}}{T}\,\, = \,\,\frac{{6000\,J\,\,mo{l^{ - 1}}}}{{273\,K}}\,\, \Rightarrow \,\,\,21.97\,\,J\,{K^{ - 1}}\,mo{l^{ - 1}}\)
$(i)\,\,{C_{12}}{H_{22}}{O_{11}}\,\, + \,\,12{O_2}\,\, \to \,\,12\,\,C{O_2}\, + \,\,11{H_2}O,\,\,\,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - 5200.7\,kJ\,mo{l^{ - 1}} $
$(ii)\,\,C\,\, + \,\,{O_2}\, \to \,\,C{O_2},\,\,\,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - \,394.5\,\,kJ\,\,mo{l^{ - 1}}$
$(iii)\,\,{H_2}\,\, + \,\frac{1}{2}{O_2}\,\, \to \,\,\,{H_2}O,\,\,\,\,\,\,\,\,\,\Delta H\,\, = \,\, - \,285.8\,kJ\,\,mo{l^{ - 1}}$
$H_2O _{(g)} + C_{(s)} = CO_{(g)} + H_{2{(g)}}$; $\Delta H = 131\, KJ$, $CO_{(g)} + \frac{1}{2}\,O_{2{(g)}} = CO_2$$_{(g)}$ ; $\Delta H = -282\, KJ,H_2$ $_{(g)}$$+ \frac{1}{2}\,O_2$$_{(g)}$ $= H_2O$$_{(g)}$; $\Delta H = - 242\, KJ, $ $C_{(s)}$ $+ O_2$ $_{(g)}$ $= $ $ CO_2$ $_{(g)}$; $\Delta$ $H = - x\,\,KJ$
${H_{2\left( g \right)}} + 1/2{O_{2\left( g \right)}} \to {H_2}{O_{\left( l \right)}};\Delta {H_2}$ હોય, તો