Area of the hinged door, \(a=20 cm ^{2}=20 \times 10^{-4} m ^{2}\)
Density of water, \(\rho_{1}=10^{3} kg / m ^{3}\)
Density of acid, \(\rho_{2}=1.7 \times 10^{3} kg / m ^{3}\)
Height of the water column, \(h_{1}=4 m\)
Height of the acid column, \(h_{2}=4 m\)
Acceleration due to gravity, \(g=9.8\)
Pressure due to water is given as:
\(P_{1}=h_{1} \rho_{1} g\)
\(=4 \times 10^{3} \times 9.8\)
\(=3.92 \times 10^{4} Pa\)
Pressure due to acid is given as:
\(P_{2}=h_{2} \rho_{2} g\)
\(=4 \times 1.7 \times 10^{3} \times 9.8\)
\(=6.664 \times 10^{4} Pa\)
Pressure difference between the water and acid columns:
\(\Delta P=P_{2}-P_{1}\)
\(=6.664 \times 10^{4}-3.92 \times 10^{4}\)
\(=2.744 \times 10^{4} Pa\)
Hence, the force exerted on the door \(=\Delta P \times a\) \(=2.744 \times 10^{4} \times 20 \times 10^{-4}\)
\(=54.88 N\)
Therefore, the force necessary to keep the door closed is \(54.88 \;N .\)