\(P_1=\) Preessure of par \(M\)
\(P_2=\) Pressure of part \(N\)
As temperature is constant
Therefore, we can write \(PV =\) constant
For \(M : P_0(40 A)=P_1(40-y) A\)
\(\Rightarrow P_1=\frac{P_0(40)}{(40-y)} \ldots \ldots .(\text { i })\)
For \(N : P_0(40 A)=P_2(40+y) A\)
\(\Rightarrow P_2=\frac{P_0 40}{(40+y)}\)
Here \(A=\) area of cross section of tube
Pressure at lower face \(\left(P_1\right)=\) Pressure at upper face \(\left(P_2\right)+\) Pressure due to mercury column of height \(20 cm\).
\(P_1=P_2=20 pg\)
Use (i) and (ii) in (iii)
\(P_0 \frac{40}{(40-y)}=\frac{P_0 40}{(40+y)}+20 p g\)
\(\frac{40 P_0}{(40-y)}-\frac{40 P_0}{(40+y)}=20 p g\)
\(40 \times 76 p g\left[\frac{2 y}{1600-y^2}\right]=20 p g\)
\((52)(2 y)=1600-y^2\)
\(304 y=1600-y^2\)
\(y^2+304 y-1600=0\)
Solving for \(y\), we get \(y=5.18\; cm\)