\(=993 \mathrm{A}^{\circ}\)
\(\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)\)
(where Rydberg constant, \(\mathrm{R}=1.097 \times 10^{7}\) )
\(\frac{1}{993 \times 10^{-10}}=1.097 \times 10^{7}\left(\frac{1}{1^{2}}-\frac{1}{n_{2}^{2}}\right)\)
Solving we get \(n_{2}=3\)
Spectral lines
Total number of spectral lines \(=3\)
Two lines in Lyman series for \(n_{1}=1, n_{2}=2\) and \(\mathrm{n}_{1}=1, \mathrm{n}_{2}=3\) and one in Balmer series for \(n_{1}=2, n_{2}=3\)