\(\mathrm{J}=\int \mathrm{Fdt}=0.2 \mathrm{~N}-\mathrm{s}\)
Angular impuls ( \(\overrightarrow{\mathrm{M}})\)
\(\overrightarrow{\mathrm{M}}_{\mathrm{c}}=\int \tau \mathrm{dt}\)
\(=\int \mathrm{F} \frac{\mathrm{L}}{2} \mathrm{dt}\)
\(=\frac{\mathrm{L}}{2} \int \mathrm{Fdt}=\frac{\mathrm{L}}{2} \times \mathrm{J}v\)
\(=\frac{0.3}{2} \times 0.2\)
\(=0.03\)
\(I_{c m}=\frac{\mathrm{LL}^2}{12}=\frac{2 \times(0.3)^2}{12}=\frac{0.09}{6}\)
\(\mathrm{M}=\mathrm{I}_{\mathrm{cm}}\left(\omega_{\mathrm{f}}-\omega_{\mathrm{i}}\right)\)
\(0.03=\frac{0.09}{6}\left(\omega_{\mathrm{f}}\right)\)
\(\omega_{\mathrm{f}}=2 \mathrm{rad} / \mathrm{s}\)
\(\theta=\omega \mathrm{t}\)
\(\mathrm{t}=\frac{\theta}{\omega}=\frac{\pi}{2 \times 2}=\frac{\pi}{4} \mathrm{sec} .\)
\(\mathrm{X}=4\)
જ્યાં $d_{A}$ અને $d_{B}$ તેમની ઘનતા છે