$p ( mm Hg )$ | $50$ | $100$ | $200$ | $400$ |
સાપેક્ષ $t _{1 / 2}( s )$ | $4$ | $2$ | $1$ | $0.5$ |
પ્રક્રિયાનો ક્રમ શોધો.
\(\frac{\left( t _{1 / 2}\right)_1}{\left( t _{1 / 2}\right)_2}=\frac{\left( P _0\right)_1^{1- n }}{\left( P _{0_2}\right)_2^{1- n }}\)
\(\Rightarrow\left(\frac{4}{2}\right)=\left(\frac{50}{100}\right)^{1- n }\)
\(\Rightarrow 2=\left(\frac{1}{2}\right)^{1- n }\)
\(\Rightarrow 2=(2)^{ n -1}\)
\(\Rightarrow n -1=1\)
\(\Rightarrow=2\)
આપેલ : $\log 2=0.3010,\log 3=0.4771,\log 5=0.6989$