magnetic field at the centre of the triangle \('O'B = ?\)
From figure, \(\tan 60^{\circ}=\sqrt{3}=\frac{1}{2 d}\)
\(\Rightarrow d=\frac{l}{2 \sqrt{3}}=\left(\frac{4.5 \times 10^{-2}}{2 \sqrt{3}}\right)\, \mathrm{m}\)
Magnetic field, \(B=\frac{\mu_{0} i}{4 \pi d}\left(\cos \theta_{1}+\cos \theta_{2}\right)\)
Putting value of \(\mu=4 \pi \times 10^{-7}\) and \(\theta_{1}\) and \(\theta_{2}\)
we will get net magenetic field
\(=3 \times B=4 \times 10^{-5} \,\mathrm{Wb} / \mathrm{m}^{2}\)