\(\frac{q}{m}=\alpha\)
\(y=2 R=2\left(\frac{m v}{q B}\right)=\frac{2 v_0}{\alpha B_0}\)
$(i)$ | $(ii)$ | $(iii)$ |
(A) $\frac{{{\mu _0}i}}{r}$ $\otimes$ | (A) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} - \frac{1}{{{r_2}}}} \right)$ $\otimes$ | (A) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} - \frac{1}{{{r_2}}}} \right)$ $\otimes$ |
(B) $\frac{{{\mu _0}i}}{{2r}}$ $\odot$ | (B) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} + \frac{1}{{{r_2}}}} \right)$ $\otimes$ | (B) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} + \frac{1}{{{r_2}}}} \right)$ $\otimes$ |
(C) $\frac{{{\mu _0}i}}{{4r}}$ $\otimes$ | (C) $\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} - \frac{1}{{{r_2}}}} \right)$ $\odot$ | (C)$\frac{{{\mu _0}i}}{4}\left( {\frac{1}{{{r_1}}} - \frac{1}{{{r_2}}}} \right)$ $\odot$ |
(D) $\frac{{{\mu _0}i}}{{4r}}$ $\odot$ | (D) $0$ | (D) $0$ |