(પાણી માટે $K_f = 1.86\,^oC\, kg\, mol^{-1}$ છે)
(મોલર દળ $S = 32\, g\, mol^{-1}, Na = 23\, g\, mol^{-1}$ )
$ = \,\frac{{\Delta {T_f}}}{{{K_f}}}\, = \,\frac{{3.82}}{{1.86}}\, = \,2.054\,mol/1000\,g$ solvent
Molality (theoretical)
$ = \,\frac{{mole\,\,of\,solute}}{{wt.\,of\,solventing\,(g)}} \times 1000$
$ = \,\frac{{5\,g\,/\,142\,g\,/\,mole}}{x} \times 1000$
$N{a_2}S{O_4}\, \to \,2N{a^ + }\, + \,SO_4^{2 - }$
Moles before dissociation $1$ $0$ $0$
Moles after dissociation $1-x$ $2x$ $x$
Von't Hoff Factor $(i) = \,\frac{{Moles\,after\,\,dissociation}}{{Moles\,before\,\,dissociation}}$
$ = \frac{{(1 - x)\, + \,2x\, + \,x}}{1}$
$Na_2SO_4$ is ionised $81.5\%$ means $x\,=\,0.815$
$ = \frac{{(1 - 0.815)\, + \,2 \times 0.815\, + \,0.815}}{1}$
$=\,2.63$
$i\, = \,\frac{{Observed\,\,molarrity}}{{Calculated\,\,molarity}}$
$ \Rightarrow \,2.63\, = \,\frac{{2.054}}{{\frac{{0.0352}}{x} \times 1000}}\, = \,45.07\,g$
આણ્વિય દળ ${K}=39, {Mn}=55, {O}=16]$