$\frac{4}{2} = {\left( {\frac{{50}}{{100}}} \right)^{1\, - \,n}}$
$\frac{2}{1} = {\left( {\frac{1}{2}} \right)^{1\, - \,n}}= {\left( {\frac{2}{1}} \right)^{n- 1}}$
$n - 1 =1$
$n = 2$
કયા તાપમાને $(K$ માં) પ્રક્રિયાનો વેગ અચળાંક $10^{-4} s ^{-1}$ થશે તે શોધો ?(નજીકના પૂર્ણાંકમાં રાઉન્ડ ઑફ)
[આપેલ : $500\, K$ પર, પ્રક્રિયાનો વેગ અચળાંક $10^{-5} s^{-1}$ છે.]
ક્રમ. |
$[A]_0$ |
$[B]_0$ |
વેગ $($મોલ $s^{-1}$) |
$(1)$ |
$0.50$ |
$0.50$ |
$1.6 \times {10^{ - 4}}$ |
$(2)$ |
$0.50$ |
$1.00$ |
$3.2 \times {10^{ - 4}}$ |
$(3)$ |
$1.00$ |
$1.00$ |
$3.2 \times {10^4}$ |
ઉપરોક્ત માહિતીને અનુરૂપ વેગ નિયમ શું છે?
$A[M]$ | $B[M]$ |
સર્જન નો પ્રારંભિક વેગ $D$ |
|
$i$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$ii$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$ii$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$iv$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
ઉપ૨ની માહિતી ના આધારે સમગ્ર પ્રક્રિયાનો ક્રમ ........ છે.