${O_3}(g)\, + \,C{l^ * }(g)\, \to \,{O_2}(g) + Cl{O^ * }(g)$ ..... $(i)$ $[{K_i} = 5.2 \times {10^9}\,\,L\,mo{l^{ - 1}}\,{s^{ - 1}}]$
$Cl{O^ * }(g) + {O^ * }(g)\, \to \,{O_2}(g) + \,C{l^ * }(g)$ ..... $(ii)$ $[{K_{ii}} = 2.6 \times {10^{10}}\,\,L\,mo{l^{ - 1}}\,{s^{ - 1}}]$
તો સમગ્ર પ્રક્રિયા ${O_3}(g){\mkern 1mu} + {\mkern 1mu} {O^*}(g){\mkern 1mu} \to {\mkern 1mu} 2{O_2}(g)$ માટે સમગ્ર પ્રક્રિયાનો વેગ .......... $L\,\,mo{l^{ - 1}}\,{s^{ - 1}}$ અચળાંક કોની સૌથી નજીક હશે ?
\({{O}_{3}}(g)+O(g)\to 2{{O}_{2}}(g)\)
Hence overall rate constant \(=\,K_i\times K_{ii}\)
\( = \,5.2 \times \,{10^9}\, \times \,2.6\, \times \,{10^{10}}\, \approx \,\) \(1.4\, \times \,{10^{20}}\,mo{l^{ - 1}}\,L{s^{ - 1}}\)
\({{O}_{3}}(g)+C{{l}^{*}}(g)\to {{O}_{2}}(g)+Cl{{O}^{*}}(g),\,\,{{K}_{i}}\)
\(Cl{{O}^{*}}(g)+{{O}^{*}}(g)\to {{O}_{2}}(g)+C{{l}^{*}}(g),\,\,{{K}_{ii}}\)
\({{O}_{3}}(g)+{{O}^{*}}(g)\to 2{{O}_{2}}(g),\) \(K_{Rate}\,=\,K_i\times K_{ii}\)
|
ક્રમ. |
$[A]_0$ |
$[B]_0$ |
શરૂઆતનો વેગ |
|
$(1)$ |
$0.012$ |
$0.035$ |
$0.10$ |
|
$(2)$ |
$0.024$ |
$0.070$ |
$0.80$ |
|
$(3)$ |
$0.024$ |
$0.035$ |
$0.10$ |
|
$(4)$ |
$0.012$ |
$0.070$ |
$0.80$ |
ઉપરોક્ત માહિતીને અનુરૂપ વેગ નિયમ શું છે?