\(\frac{4}{2} = {\left( {\frac{{50}}{{100}}} \right)^{1\, - \,n}}\)
\(\frac{2}{1} = {\left( {\frac{1}{2}} \right)^{1\, - \,n}}= {\left( {\frac{2}{1}} \right)^{n- 1}}\)
\(n - 1 =1\)
\(n = 2\)
$\left( {{\rm{R}} = 8.3\;{\rm{Jmo}}{{\rm{l}}^{ - 1}}{{\rm{K}}^{ - 1}},\ln \left( {\frac{2}{3}} \right) = 0.4,\left. {{e^{ - 3}} = 4.0} \right)} \right.$
$\mathrm{N}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{g})$
સાચો વિકલ્પ કયો છે ?
$N_{2(g)} + 3H_{2(g)} \rightarrow 2NH_{3(g)}$ તો $\frac{d[NH_3]}{dt}$ અને $\frac{d[H_2]}{dt}$ વચ્ચેનો સમાનતાનો સંબંધ ............ થશે.