\(\therefore \,\,{V_1}^\prime \, = \frac{{k({Q_1} - q)}}{{{R_1}}}\) અને \({V_2}^\prime \, = \frac{{k({Q_2} + q)}}{{{R_2}}}\)
\(\therefore \,\,{V_1}^\prime \, = {V_2}^\prime \,\,\,\,\therefore \,\frac{{{Q_1} - q}}{{{R_1}}}\, = \frac{{{Q_2} + q}}{{{R_2}}}\,\,\,\therefore \,\frac{{{Q_1} - q}}{{{Q_2} + q}} = \frac{{{R_1}}}{{{R_2}}}\,\,.....(i)\)
ગોળાઓની સપાટી પર વિદ્યુતક્ષેત્ર,
\({E_1} = \frac{{k({Q_1} - q)}}{{R_1^2}}\) અને \({{\text{E}}_{\text{2}}}\, = \frac{{k({Q_2} + q)}}{{R_2^2}}\,\,\,\therefore \,\frac{{{E_1}}}{{{E_2}}}\, = \left( {\frac{{{Q_1} - q}}{{{Q_2} - q}}} \right)\,\left( {\frac{{R_2^2}}{{R_1^2}}} \right)\, = \frac{{{R_1}}}{{{R_2}}}\, \times \left( {\frac{{R_2^2}}{{R_1^2}}} \right)\,\)
\( = \frac{{{R_2}}}{{{R_1}}}\, = \frac{{2mm}}{{1mm}}\,\,\,\therefore \,\frac{{{E_1}}}{{{E_2}}} = \frac{2}{1}\,\)(જો \({{\text{V}}_{\text{2}}}{\text{ > }}{{\text{V}}_{\text{1}}}\) લઈએ તો પણ આ જ પરિણામ મળે . )