\(k\,= \,\frac{{2.303}}{t}\,\,\log \,\,\frac{{{{[A]}_0}}}{{{{[A]}_t}}}\)
\(\log \frac{{{[A]}_{0}}}{{{[A]}_{t}}}=\frac{kt}{2.303}\) \(=\frac{4.5\times {{10}^{-3}}\,{{\min }^{-1}}\times \,60\,\min }{2.303}\) \(=0.11729\)
\(\log \frac{{{{[A]}_0}}}{{{{[A]}_t}}}\,\, = \,Antilog \,0.1172\,= \,1.310\)
\({[A]_t}\, = \,\frac{{{{[A]}_0}}}{{1.310}}\, = \,\frac{M}{{1.310}}\, = \,0.763\,M\)
તબક્કો \(2:1\) કલાક \((60 \) મિનિટ) પછી દરની ગણતરી
\(60\) મિનિટ પછી દર \(=k{{[A]}_{t}}\) \(=4.5\times {{10}^{-3}}\,mi{{n}^{-1}}\) \(\times 0.763\,M=\) \(3.4354\times {{10}^{-3}}M\,mi{{n}^{-1}}\)
${O_3} \rightleftharpoons {O_2} + \left[ O \right]$
${O_3} + \left[ O \right] \to 2{O_2}$ (slow)
તો $2{O_3} \to 3{O_2}$ પ્રક્રિયાનો કમ જણાવો.